ФГБОУ ВО «Удмуртский государственный университет»

Харанжевский Евгений Викторович Кривилев Михаил Дмитриевич Галенко Петр Константинович

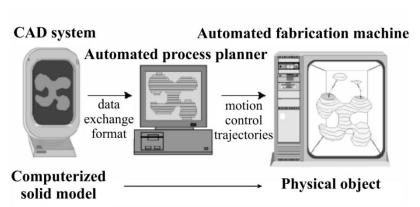
ВНЕДРЕНИЕ АДДИТИВНЫХ ТЕХНОЛОГИЙ ДЛЯ ПОЛУЧЕНИЯ НОВЫХ ФУНКЦИОНАЛЬНЫХ И КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЯХ УДМУРТИИ

ОПЫТ СОЗДАНИЯ ИННОВАЦИОННОЙ ПРОДУКЦИИ И ТЕХНОЛОГИЙ УДГУ

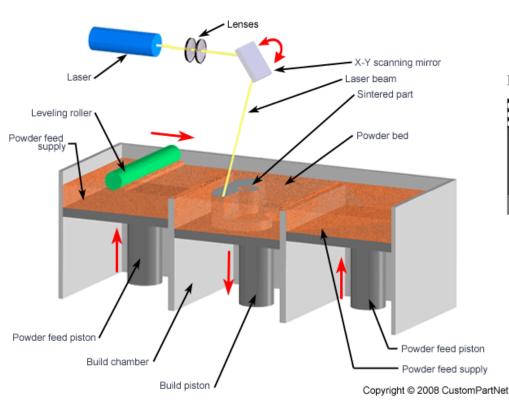
1. Проведение НИР по направлениям:

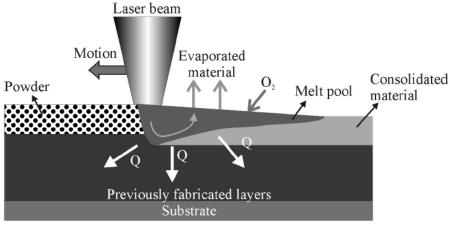
Аддитивные технологии Композиционные материалы Накопители энергии

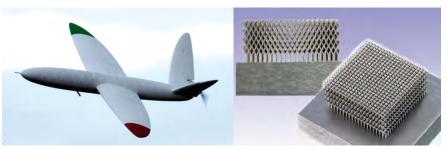
2. Создание малых инновационных предприятий (МИП) по использованию результатов научной деятельности для создания инноваций


Разработка продукции и технологий (лазерные технологии, технологии аддитивного производства, композиционные материалы)
Разработка электронных приборов на основе датчиков для биосистем

3. Создание инновационных предприятий и организация производства инновационной продукции на предприятиях УР


Научно-технологические центры 216-Ф3 «Об Инновационных Научно-технологических Центрах» Производственные предприятия Машиностроительные кластеры


Финансовая поддержка НИР в рамках проектов
РФФИ, Минобрнауки, Роскосмоса,
Фонда содействия развитию малых форм предприятий в научно-технической сфере

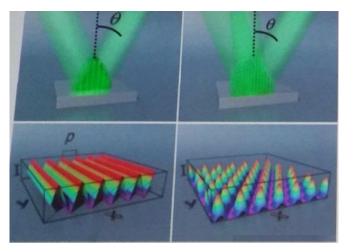

Методы селективного лазерного спекания и плавления

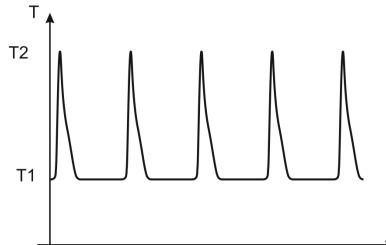
Двухлучевая установка для 3D печати изделий из металлических порошков: композиционные материалы, медные сплавы, тугоплавкие соединения

Проблемы СЛП:

- 1. Остаточная пористость
- 2. Ограниченное число материалов
- 3. Требования к порошкам

$$l_{\tau} = \sqrt{\frac{K\tau}{\rho \ C_{\rho}}}$$

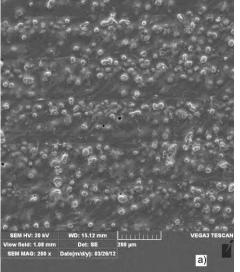

К – коэффициент теплопроводности

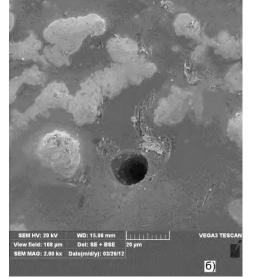

τ – длительность импульса

 ρ – плотность

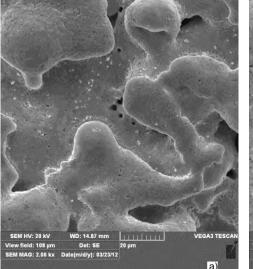
Ср – удельная теплоемкость

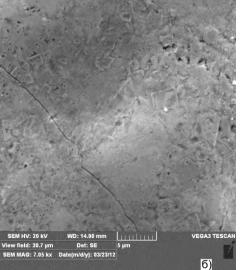
Комбинированная двулучевая лазерная установка (непрерывный – короткоимпульсный лазеры)

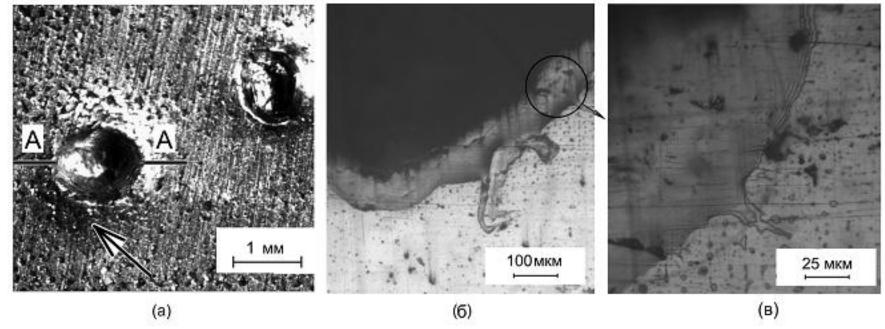




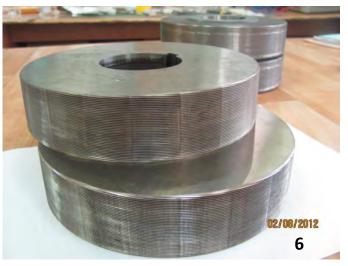
Т1 – температура плавления метал. матрицыТ2 – температура плавления тугоплавких соединений


Градиентные функциональные покрытия на основе композиционных материалов с металлической матрицей

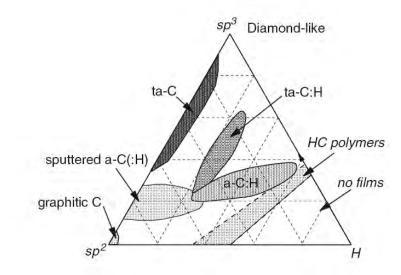

Многослойные твердосплавные покрытия на основе карбида вольфрама


СЭМ-изображение поверхности после нанесения первого слоя твердосплавного покрытия: а — обзорное изображение во вторичных электронах; б — совмещенное изображение во вторичных и обратно рассеянных электронах участка поверхности вблизи изолированной цилиндрической поры

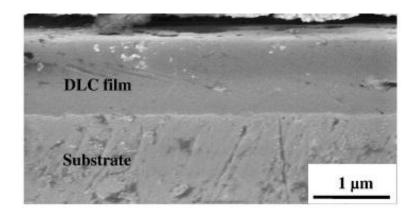
СЭМ-изображение поверхности после нанесения пятого слоя твердосплавного покрытия: а — обзорное изображение во вторичных электронах х2000; б — увеличенный участок вблизи микротрещины х7000


Многослойные твердосплавные покрытия на основе карбида вольфрама

Пластическая деформация твердосплавного покрытия толщиной 120 мкм после ударного действия индентора. Стрелки указывают на место начала значительной пластической деформации, начиная с которого металл поднимается от поверхности


Градиентные функциональные покрытия на основе композиционных материалов с металлической матрицей

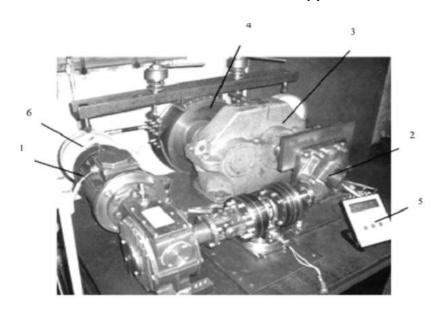
Градиентные углерод-содержащие покрытия

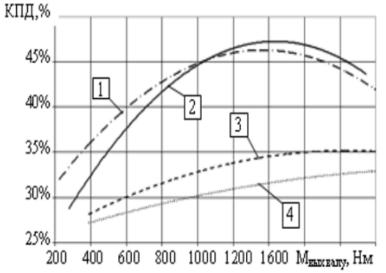

Методы нанесения АПП (PVD, CVD):

- термическое (DC) напыление;
- радиочастотное (RF) напыление;
- ионно лучевое напыление;
- электродуговое осаждение;
- импулсьное лазерное осаждение;
- плазмо-химическое напыление CVD.

Основной недостаток всех методов – значительные внутренние напряжения, приводящие к отслаиванию покрытий.

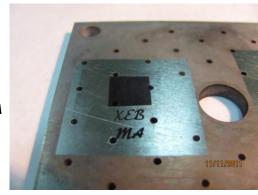
Ternary phase diagram of the C, H system [1]

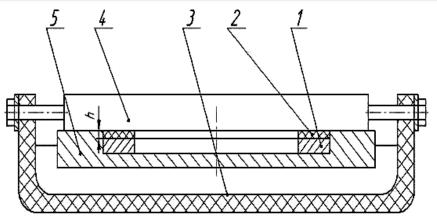


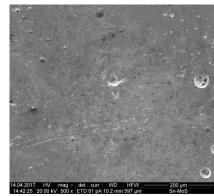

Градиентные углерод-содержащие покрытия

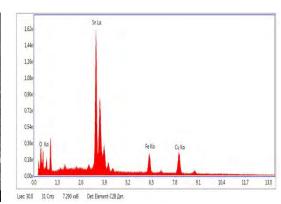
Модель состава углеродного покрытия на поверхности стали, полученного методом ВЛС

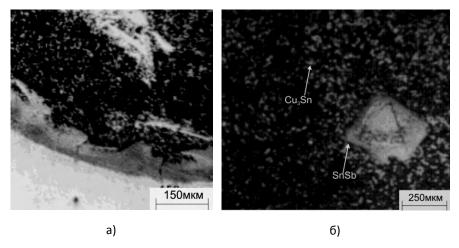
Алмазоподобная пленка ta-C:H DLC Включения графита, Промежуточный Fe_xC_γ слой α–Fe, γ–Fe Диффузная граница Теформированный феррит + перлит Те-0,2%С

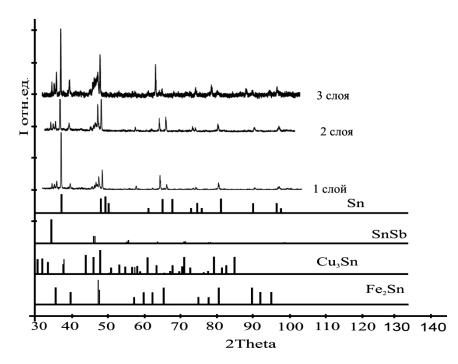

Испытательный стенд.




Результаты испытаний редуктора с различными опорами скольжения:


- 1 коммерческие металфторопластовые опоры;
- 2 стальная опора с углеродсодержащим покрытием (метод ВЛС);
- 3 опоры из чугуна;
- 4 стальные опоры


Поколение 2: Лазерная наплавка баббита Б83 и его модификация углеродными наноструктурами



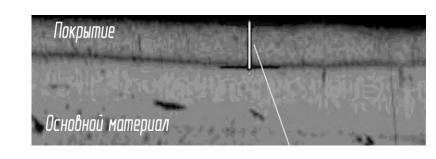
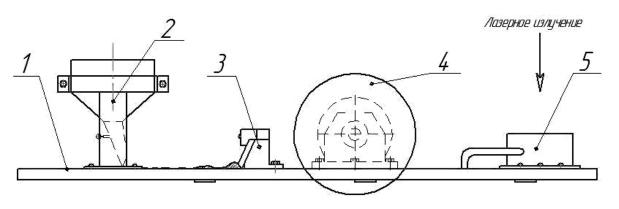
Приспособление для нанесения порошковой композиции 1-основание подшипника скольжения, 2-нанесенная порошковая композиция, 3- основание, 4-выравнивающий нож, 5- матрица

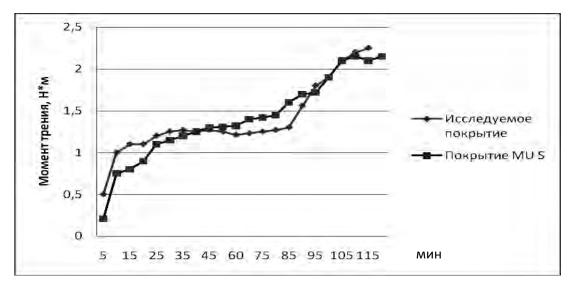
СЭМ-изображение поверхности баббитового композиционного покрытия после лазерной наплавки. Увеличение 500х

Поколение 3: Лазерная наплавка композиционных материалов

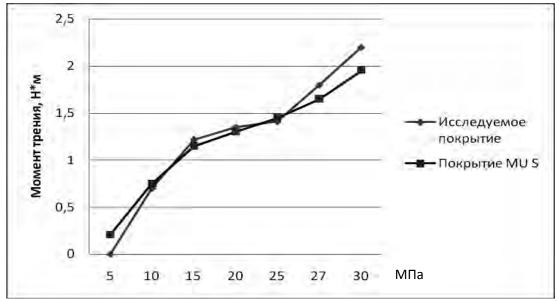
Таблица 1 -Свойства структурных составляющих баббита Б83

		Твердость		Температур
Структурная	ρ, κ г/ м³	интерметалл	Микротвердос	а
составляющая	μ, κι/Μ-	идов НВ,	ТЬ	кристаллиз
		кгс/мм ²		ации, °С
α-фаза	7,25	-	22	242
β-фаза (SnSb)	6,96	54	95	273
γ-фаза (Cu ₃ Sn)	10,91	383	320	375


Таблица 2 - Химический и дисперсионный состав порошковых составов

Nº	Содержание элементов,			Фракционный
смеси	вес. %			состав по
	Б83	MOS ₂	Cu	количеству частиц
1	основа	1	5	40-70 мкм
2	основа	1	20	- // -
3	основа	1	30	- // -
4	основа	1	40	- // -

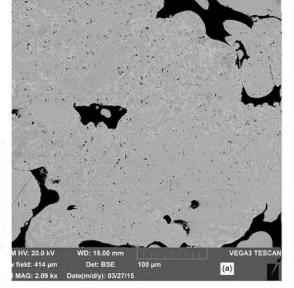

Nº	Р,МПа	f _{тр} (жидкостное	T ⁰ C
смеси		трение)	
1	54	0,15	110
2	73	0,18	155
3	75	0,22	160
4	66	0,31	121
		·	

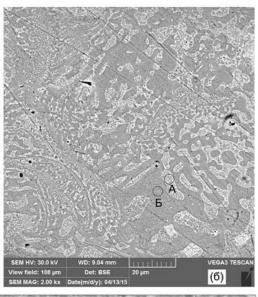
Поколение 2: Лазерная наплавка баббита Б83 и его модификация углеродными наноструктурами

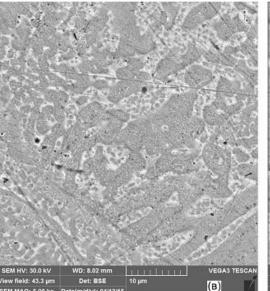
Изменение момента трения при сухом трении в зависимости от времени при нагрузке 15 МПа

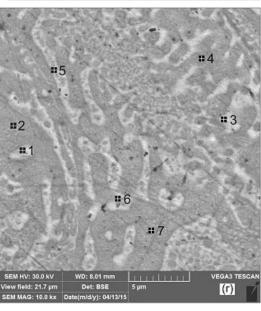
Изменение момента трения при сухом трении в зависимости от величины контактного напряжения

t, °C $\alpha + L$ 1500 1300 $\gamma + L$ 1094 1100 $L + \varepsilon$ $\gamma + \epsilon$ 900 $\alpha + \gamma$ 850 $\alpha + \epsilon$ 700 20 40 60 80 Cu, at.%

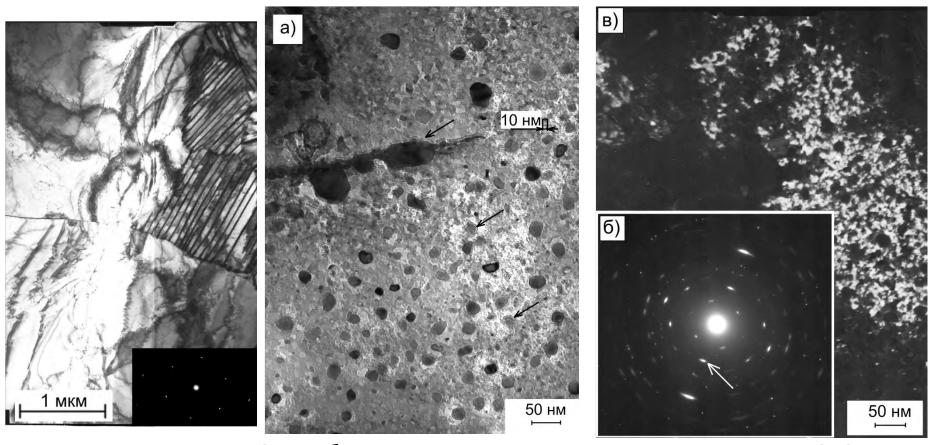

Fe-50%Cu влп Интенсивность, отн. ед. порошок Cu 30 40 90 110 50 60 80 100 120 130 2Θ, Со(Кα), град.


Область	Рис.	Fe	Cu	О
A^1	4.76	35±4	64±4	1
Б1	4.7б	59±4	40±4	1


12

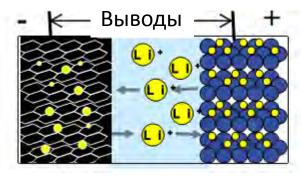

ПРИМЕРЫ ВЛС Fe-Cu, Fe-Cu-C

Неравновесная структура в системе Fe-50 мас.%Cu: СЭМ, РСА

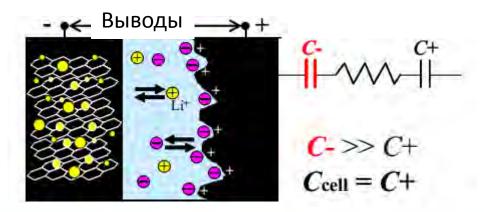


Диспергирование оксидов хрома в стальной матрице методом ВЛС: ПЭМ

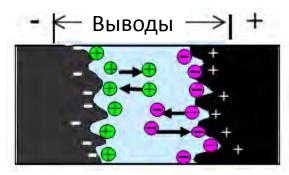
сталь 20


ПЭМ-изображение структуры участка в зоне нерастворенного $\operatorname{Cr_2O_3}$ после лазерной обработки: а — светлопольное изображение структуры; б — электронограмма участка, содержащая рефлексы шпинели $\operatorname{FeO\cdot Cr_2O_3}$; в — темнопольное изображение (210) $\operatorname{FeO\cdot Cr_2O_3}$,

OTKPЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО



Основные современные типы накопителей энергии для применения в установках возобновляемой энергетики

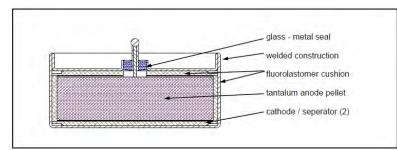

ЛИА

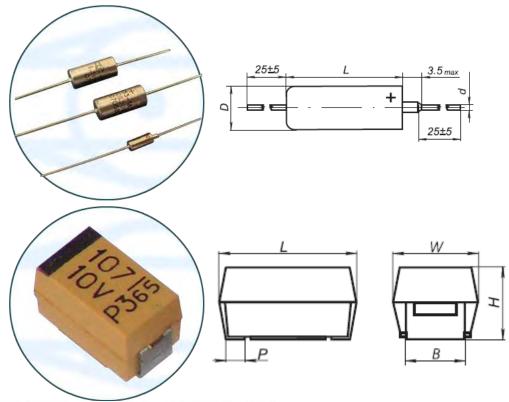
Графит электролит LiCoO₂

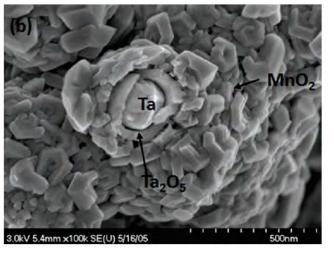
Суперконденсаторы с ДЭС

Активир. электролит Активир. уголь уголь

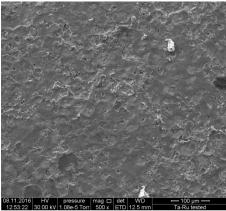
Постановка проблемы: материалы электродов


Танталовые конденсаторы

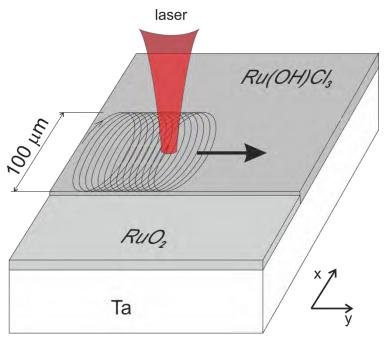

Танталовые конденсаторы: По конструкции:


- в герметичном корпусе
- ЧИП конденсаторы

По исполнению:


- оксидно- полупроводниковые
- с полимерным катодом
- с рутенированным катодом

Параметры ВЛС RuO₂

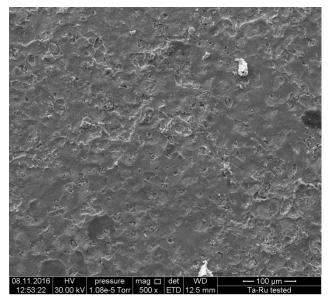

Схема осуществления процесса

Слой Ru(OH)CI₃ 10 µm 3она плавления 1-5 µm Матрица (Та)

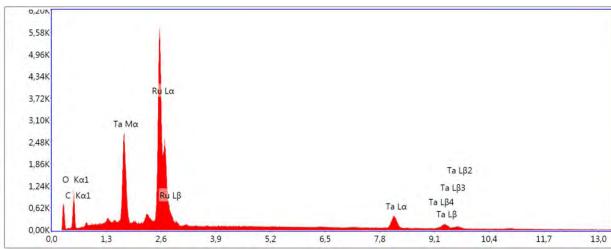
Дехлорирование окисление T>4000°C

Плавление танталовой матрицы T>3200 °C

Схема сканирования

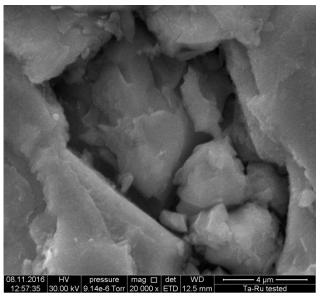

Параметры ВЛС

Parameters	Values examined
Мощность (Вт)	56 , 40, 20
Скорость сканирования (мм с-1)	300, 600, 900 , 1200, 1500
Скорость перемещения луча(мм с-1)	10, 20, 40, 100 , 200
Частота импульсов (кГц)	20 , 40, 60, 80, 100


T °C

Результаты ВЛС RuO₂

СЭМ


ЭМ Элементный состав EDAX

Lsec: 30.0 0 Cnts 0.000 кэВ Det: Octane Prime Дет.

Элементный состав, ат.%

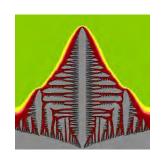
Элемент	Атомный %	Полн. инт.	% ошибок
ОК	65.68	180.27	11.33
RuL	24.23	1676.60	2.68
TaL	3.61	175.01	10.59

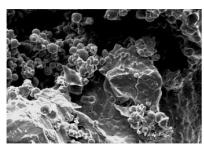
Перспективы развития аддитивных технологий

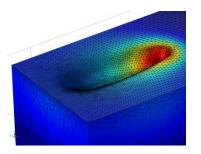
Разработка комбинированной двухлучевой машины позволит расширить область применения метода СЛП для аддитивного производства 3D изделий из порошков:

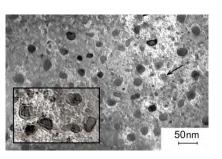
- Медь, медные сплавы
- Композиционные материалы с металлической матрицей
- Жаропрочные и жаростойкие сплавы
- Сплавы с большой разницей в температуре плавления компонентов: Та-Сr, и т.д.

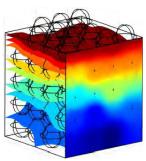
Возможности сотрудничества с промышленными предприятиями


- Внедрение готовых технологий (функциональные покрытия, сверхтвердые материалы, антифрикционные материалы, сверхтвердые материалы с сверхнизким коэффициентом трения, антикоррозионные покрытия, жаропрочные и керамические покрытия)
- Проведение НИОКР в областях аддитивных технологий, функциональных покрытий, новых материалов)
- Экспертиза проектов и технологий в сфере машиностроения, материаловедения на предмет выявления причин несоответствия требованиям качества продукции.


Пример экономического эффекта: антифрикционные материалы


- Существующая технология композиционный бронзополимерный материал (ФРГ).
- Замещается антифрикционным композиционным материалом нашей разработки. Инвестиции в проект около 10 млн.руб., срок освоения 3 месяца, срок окупаемости около 2,5 лет.


Пример экономического эффекта: электротехническая продукция


Производство электронных лент суперконденсаторов на основе активированного угля или диоксида рутения. Инвестиции около 500 тыс.долл., срок окупаемости около 3 лет.

Спасибо за внимание!

Финансовая поддержка в рамках проектов РФФИ (3 проекта по АТ), Минобрнауки (1 проект) и Роскосмоса (КЭ «Перитектика» и «Кинетика»)